国产三级大片在线观看-国产三级电影-国产三级电影经典在线看-国产三级电影久久久-国产三级电影免费-国产三级电影免费观看

Set as Homepage - Add to Favorites

【virgin honeymoon sex video】Scientists found an enigma in deep space. The Webb telescope solved it.

Source:Feature Flash Editor:synthesize Time:2025-07-02 22:06:05

The virgin honeymoon sex videopowerful James Webb Space Telescope has solved another cosmic mystery.

Astronomers can see a type of light emitted billions of years ago from some of the earliest galaxies, yet many scientists don't think this light should be visible. That's because, at a crucial time in the universe's history — a time called "reionization" when the first stars began to glow — space was absolutely packed with gas spawned by the Big Bang (the pivotal explosion that created our universe).

Such thick gas should shroud this light from the first stars and galaxies. But it doesn't. We can see light emitted from early hydrogen atoms (the smallest atom, and one of the first elements ever formed).

SEE ALSO: NASA reveals its X-plane. It will fly over the U.S. at extreme speeds.

"One of the most puzzling issues that previous observations presented was the detection of light from hydrogen atoms in the very early Universe, which should have been entirely blocked by the pristine neutral gas that was formed after the Big-Bang," Callum Witten, an astronomer at the University of Cambridge who led the new Webb research on this mystery, said in a statement. "Many hypotheses have previously been suggested to explain the great escape of this 'inexplicable' emission."

But the Webb telescope, built with a huge mirror to detect extremely faint light and resolve extremely distant objects, has provided a compelling answer.

It turns out the "inexplicable" light previously observed coming from a particular ancient galaxy isn't just coming from a single galaxy. Webb found that these emissions are actually coming from groupsof galaxies— we just couldn't see them. These early galaxies were colliding and merging with one another (galaxies often collide), ultimately creating an extremely active cosmic environment. In the new research, published in the peer-reviewed journal Nature Astronomy, researchers found that this intensive activity — galactic collisions stoking the vigorous creation of new stars — generated strong light emissions and also cleared the way for the light to escape into space.

The Webb image below shows the distant galaxy EGSY8p, located a whopping 13.2 billion light-years from Earth, surrounded by two other smaller galaxies — something previous observations couldn't detect.

"Where Hubble was seeing only a large galaxy, Webb sees a cluster of smaller interacting galaxies, and this revelation has had a huge impact on our understanding of the unexpected hydrogen emission from some of the first galaxies," Sergio Martin-Alvarez, a researcher at Stanford University who worked on the new study, noted in a statement.

Mashable Light Speed Want more out-of-this world tech, space and science stories? Sign up for Mashable's weekly Light Speed newsletter. By clicking Sign Me Up, you confirm you are 16+ and agree to our Terms of Use and Privacy Policy. Thanks for signing up!
The extremely distant galaxy EGSY8p flanked by two smaller galaxies. The extremely distant galaxy EGSY8p flanked by two smaller galaxies. Credit: ESA Webb / NASA / CSA

Astronomers will continue to direct Webb at some of the earliest galaxies that ever formed, with the greater goal of understanding how galaxies, like our own Milky Way, came to be.


Featured Video For You
10 mind-blowing discoveries from the James Webb Telescope

The Webb telescope's powerful abilities

The Webb telescope — a scientific collaboration between NASA, the ESA, and the Canadian Space Agency — is designed to peer into the deepest cosmos and reveal new insights about the early universe. But it's also peering at intriguing planets in our galaxy, along with the planets and moons in our solar system.

Here's how Webb is achieving unparalleled feats, and likely will for decades:

- Giant mirror: Webb's mirror, which captures light, is over 21 feet across. That's over two-and-a-half times larger than the Hubble Space Telescope's mirror. Capturing more light allows Webb to see more distant, ancient objects. As described above, the telescope is peering at stars and galaxies that formed over 13 billion years ago, just a few hundred million years after the Big Bang.

"We're going to see the very first stars and galaxies that ever formed," Jean Creighton, an astronomer and the director of the Manfred Olson Planetarium at the University of Wisconsin–Milwaukee, told Mashable in 2021.


Related Stories
  • Webb telescope image isn't just glorious. It shows warped space.
  • Webb discovers close star system suffered recent trauma
  • The best telescopes for gazing at stars and solar eclipses in 2024
  • NASA spacecraft keeps on going faster and faster and faster
  • If a scary asteroid will actually strike Earth, here's how you'll know

- Infrared view: Unlike Hubble, which largely views light that's visible to us, Webb is primarily an infrared telescope, meaning it views light in the infrared spectrum. This allows us to see far more of the universe. Infrared has longer wavelengths than visible light, so the light waves more efficiently slip through cosmic clouds; the light doesn't as often collide with and get scattered by these densely packed particles. Ultimately, Webb's infrared eyesight can penetrate places Hubble can't.

"It lifts the veil," said Creighton.

- Peering into distant exoplanets: The Webb telescope carries specialized equipment called spectrographsthat will revolutionize our understanding of these far-off worlds. The instruments can decipher what molecules (such as water, carbon dioxide, and methane) exist in the atmospheres of distant exoplanets — be they gas giants or smaller rocky worlds. Webb will look at exoplanets in the Milky Way galaxy. Who knows what we'll find?

"We might learn things we never thought about," Mercedes López-Morales, an exoplanet researcher and astrophysicist at the Center for Astrophysics-Harvard & Smithsonian, told Mashable in 2021.

Already, astronomers have successfully found intriguing chemical reactions on a planet 700 light-years away, and as described above, the observatory has started looking at one of the most anticipated places in the cosmos: the rocky, Earth-sized planets of the TRAPPIST solar system.

0.1676s , 14132.0703125 kb

Copyright © 2025 Powered by 【virgin honeymoon sex video】Scientists found an enigma in deep space. The Webb telescope solved it.,Feature Flash  

Sitemap

Top 主站蜘蛛池模板: 国产AV亚洲精品久久久久软件 | 精品久久久久久免费影院 | 91精品无码久久久久久久久 | 99国产精品永久免费视频 | 婷婷射精AV这里只有精品 | 国内视频一区二区 | 亚洲精品无码福利在线观看 | 成人无码A片一区二区三区免费看 | 黑人巨大进入白人美女视频 | 精华国产精华精华液网站 | 亚洲a∨无码成人精品区在线观看 | 中文字幕一区二区三区日韩精品一区 | 久久久欧美国产精品人妻噜噜 | 伦理电影网手机版在线观看 | 久久精品视在线看1 | 综合色99| 亚洲中文无码福利网址 | 国产精品无码一区二区在线观动漫 | 伊人久久大香线蕉观看 | 麻豆午夜区吴梦 | 久久精品综合一区二区三区 | 疯狂少妇2做爰中文字幕 | 欧美又粗又黄又硬的A片 | 国产àⅴ无码日韩 | 亚洲精品| 国产人A片在线乱码视频 | 在线播放一区 | 国产福利不卡视频在免费播放 | 在线观看亚洲一区二区 | 欧美国产一区二区三区激情无套 | 小黄人福利导航 | 国产真实乱人偷精品人妻69 | 亚洲中文字幕久久精品蜜桃 | 久久久久久久精品成人热 | 国产综合久久久久 | 在线观看国产精品 | 无码国产欧美日韩精品 | 久久久国产精品视频! | 国产成人精品永久免费视频 | 欧美日韩黄色网站在线免费 | 国产v片在线观看精品亚洲 国产v日本v欧美v一二三四区 |